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A multigrid method for computing steady solutions of the compressible Navier–
Stokes equations is described. The convection part of the equations is approximated
by a simple low-order upwind-biased scheme employed for multigrid relaxation in
combination with a higher order essentially non-oscillatory (ENO) scheme used to
supply adefect correctionto the right-hand side of the discrete equations on the
locally finest multigrid levels in a way ensuring the overall high accuracy of the
solution. A damping technique is employed to stabilize and accelerate the defect-
correction process. c© 2001 Academic Press
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1. INTRODUCTION

This work is motivated by the necessity to improve the ability of Navier–Stokes solvers
to predict correctly major aerodynamic characteristics of flow (such as drag coefficient) in
a turbulent transonic regime. In this regime linearly stable high-order methods are often
unstable and most standard methods add artificial dissipation (explicitly or implicitly as in
TVD schemes) in order to ensure the nonlinear stability. This leads to a loss of accuracy
as the details of flow near the shock (damped by artificial viscosity) may considerably
affect large-scale properties of the flow [1, 2]. Therefore, numerical results frequently lack
sufficient credibility from the viewpoint of practical aerodynamics.

ENO schemes, introduced by Hartenet al. [3] and further simplified by Shu and Osher
[4], use the idea of an adaptive stencil interpolation from the regions where the solution is

1 Partial results of this paper were presented in the 14th AIAA CFD Conference, pp. 705–715, Norfolk, Virginia,
June 1999.

2 This research was supported by Israeli Ministry of Science and Technology in the years 1997–1999.
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smoother, and thus achieve accuracy of a uniformly high order. In previous publications
[5–7] a finite-volume numerical method based on the ENO approach was introduced and
applied to realistic aerodynamic geometries. Accurate results were achieved on relatively
coarse grids without the need for any additional dissipation. The method was verified for a
variety of inviscid and viscous flows in different flow regimes including turbulent transonic
solutions with wide regions of separated flow.

The main drawback of the method remained its relatively slow convergence. To accelerate
the convergence, a simplified multilevel scheme was used in [7], where the computations
on each successively finer level used as initial guesses solutions interpolated from a coarser
grid. But in this approach, referred to henceforth as thegrid-sequencingmethod, the coarser
grids were never visited again, so the usual multigrid convergence rates were not achieved.
Moreover, because of extensive use of local grid refinements (which may cover only the
boundary layer regions, for example), coarser grid feedback is necessary to get a correct
overall solution. In order to perform large-scale computations employing millions of grid
points, it was crucial to improve the efficiency of the method, while still retaining its high
accuracy. Unfortunately, a straightforward implementation of the multigrid strategy em-
ploying FAS (full approximation scheme [10]) in conjunction with ENO discretization was
not satisfactory even for inviscid solutions, and it failed to converge for high-Reynolds so-
lutions of the Navier–Stokes equations. This is partly due to the very nonsmooth solutions
(with shocks and boundary layers) and to the anisotropies (which are due to grid-stretching
near boundaries). But even for smooth solution fields, ENO discretization does not pro-
duce stencils for which efficient smoothers can be constructed. Depending on the local
smoothness properties of the fields, ENO may produce central-difference stencils or even
downstream-biased stencils (if the flux is smoother in the downstream region than up-
stream). Additional problems arise as small changes in the solution field lead to a flip-flop
behavior of a stencil, resulting from the nonlinear dependence of the discretization on the
solution. This prevents the standard direct multigrid approach from succeeding with ENO.
(See also associated problems in multigrid solution of flows at high-Reynolds numbers and
recommended solution methods in [11, 12].)

To overcome the difficulties mentioned above we preferred an approach where the target
discretization is different from that used in the relaxation process of the multigrid cycle.
With this end in view, the solver of [5–7] was changed to be based on a defect correction
multigrid approach. We employ a first-order-accurate driver, which is relatively easy to
invert, and a high-order ENO defect correction.

We accelerate the convergence of the defect correction process by using stencil-dependent
damping to the defect correction, employing damping parameters determined by a simple
one-dimensional a priori analysis and numerical tests. This approach leads to a faster and
smoother convergence.

The resulting multigrid method is stable and convergent. It retains the high accuracy of
the ENO method of [5–7] and allows performing high-resolution computations incorporat-
ing local grid refinements by using the necessary multigrid feedback from coarser grids.
Although the method does not achieve the so-called textbook multigrid efficiency typical
to elliptic problems, only a comparatively small number of multigrid cycles is needed to
reduce the error below the level of truncation errors. From the aerodynamic perspective, this
means that the method yields at least three significant figures in lift and drag coefficients
allowing accurate estimates of sensitive flow characteristics on practical mesh densities to
be obtained. The results include three benchmarks:



318 EPSTEIN, AVERBUCH, AND YAVNEH

1. Inviscid flow over ONERA M-6 on a set of grids with high aspect ratio cells.
2. Turbulent flow computation over the common test-case of ONERA M-6.
3. Turbulent flow computation over a transport-type cranked wing with highly cusped

profiles, in flight conditions of high transonic flow, involving large regions of separated flow.

The above tests are compared with theory (item 1) and with wind-tunnel experiments (items
2 and 3). Multigrid versus grid-sequencing comparisons are given where appropriate.

The paper has the following structure: The governing equations and the discretization
is given in Section 2. In Section 3 the multigrid defect-correction approach is described.
The optimal damping and convergence analysis of the defect-correction process is given in
Section 4. Extensive numerical results are given and analyzed in Section 5.

2. THE EQUATIONS AND DISCRETIZATION

The Navier–Stokes equations in Cartesian coordinates may be written in the form

qt + divC = divV, (2.1)

where the tensorC = (f, g, h) represents the convection terms, the tensorV = (r , s, h)
represents the viscous terms,q = (ρ, ρu, ρv, ρw, E) is the density,(u, v,w) is the velocity
vector,E is the energy,t is the time,f, g, h are the inviscid (convection) fluxes, andr , s, t
are the viscous fluxes which depend in a nonlinear mode onq.

The key point of the approximation scheme for the Navier–Stokes equations is the choice
of discretization for the convective part of the spatial operator. To deal with practical aerody-
namic configurations in the industrial environment the following requirements are to be met:

1. Applicability to 3D reasonably smooth grids not necessarily defined by mapping
functions, but rather by more general sets of vertices.

2. Applicability to high aspect ratio grids typical to Navier–Stokes computations.
3. Ability to “coexist” with viscous terms without overriding them by artificial viscosity

effects.
4. High accuracy on aerodynamic level including computation of sensitive flow charac-

teristics such as drag.
5. Use of a minimal number of numerical parameters.
6. Robustness.
7. A high ratio of accuracy to computational work.

These requirements lead us to employ a low-dissipation scheme allowing good accuracy
on relatively coarse grids. Theoretical considerations, supplemented by extensive numerical
experiments, showed that the ENO-based scheme first introduced in [5–7], and briefly de-
scribed in this section, possesses the above properties. In this work, the numerical scheme is
incorporated in a multigrid framework by means of the defect-correction approach. This en-
hances the robustness of the method and substantially accelerates the computations allowing
us to perform the large-scale calculations of complex 3D turbulent flows. The computational
aspects of this approach are discussed in Sections 3 and 4.

2.1. Spatial Approximation of Convection Terms

We assume that the grid is structured, consisting of cells that form an(i, j, k) structure.
By integrating over each cell separately we get a system of ODEs which can be solved by
a time-stepping procedure.
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For a particular cell(i, j, k) the approximation is assumed to be

(Äi, j,kqi, j,k)t + [C · (Sn)] i+0.5, j,k − [C · (Sn)] i−0.5, j,k + [C · (Sn)] i, j+0.5,k

− [C · (Sn)] i, j−0.5,k + [C · (Sn)] i, j,k+0.5− [C · (Sn)] i, j,k−0.5

= [V · (Sn)] i+0.5, j,k − [V · (Sn)] i−0.5, j,k + [V · (Sn)] i, j+0.5,k

− [V · (Sn)] i, j−0.5,k + [V · (Sn)] i, j,k+0.5− [V · (Sn)] i, j,k−0.5, (2.2)

whereÄi, j,k is the cell volume,qi, j,k is some mean value ofq over the cell, andS is the area
of a cell side surface. Half-indices indicate from which side of the cell the flux (in square
brackets) is taken as we now describe.

Fluxes with half-indices are approximated by a one-dimensional interpolation from
nearby cell centers. That is, fluxes with subscriptsi + 1

2, j, k andi − 1
2, j, k are approxi-

mated by fluxes at the cell centers with the samej andk and so on. A difficulty is introduced
by the use of a staggered grid (withq,C defined at cell centers and the associated fluxes
on the cell sides, as opposed to the case of grids defined by an analytic mapping where
thecurvilinear fluxes are well defined at the cell centers). The interpolation operator must
possess the following properties:

The approximation property.When the grid is smooth, it must approximate well a
corresponding curvilinear flux in a mapping-defined system of coordinates.

The consistency property.A constant-field solution is interpolated exactly.
These properties are ensured, e.g., by choosing the interpolation operatorI in the form

[C · (Sn)] i+0.5, j,k = I {Cl , j,k · (Sn)i+0.5, j,k} l = i, i + 1, i − 1, . . . , (2.3)

with the direction vector frozen in the interpolant. The specific choice of the (nonlinear)
operatorI is described next.

2.2. Upwind-Biased and ENO Implementation

The upwind-biased scheme actually used in the relaxation process employs only a one-
point template for each characteristic flux interpolation, chosen according to the sign of
the corresponding eigenvalue. The characteristic decomposition is applied at half-indexed
points of the grid. An approximate Jacobian in the appropriate direction is introduced,
and fluxes in the right-hand side of Eq. (2.3) are projected into local characteristic
fields.

The ENO approach is implemented by choosing a template in the right-hand side of
Eq. (2.3) according to local characteristics and smoothness of the fluxes, which may change
with iterations. An ENO interpolation template (typically consisting of three points in
this work) is determined separately in each field, primarily according to the sign of the
corresponding eigenvalue and then according to the smoothness of the projected fluxes
[4–6]. The interpolated characteristic fluxes are projected back to get the Cartesian
ones.

In the framework of the present method the ENO procedure mentioned above is applied
only for the defect-correction calculation a very limited number of times (roughly equal to
the number of multigrid cycles), and most of the computational work is performed using a
relatively cheap upwind biased relaxation (see also Section 3.)
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Remark. In the case of an eigenvalueλ changing sign between indicesI andI + 1, the
corresponding fluxf is split into two fluxesf+ and f− such that

( f+)+ ( f−) = f
(2.4)

( f+)− ( f−) = max{|λI |, |λI+1|} Projλ(q),

and the procedure is applied separately onf+ and f− (so-called entropy fix). Note that
there is no need for any artificial numerical parameters in Eq. (2.4).

2.3. Approximation of Viscous Terms

Natural finite differences are used to approximate the first derivatives along the local grid
coordinates. The Cartesian derivatives are obtained by combining the above derivatives in
a way which ensures exactness for a linearly changing flow-field.

2.4. Time-Marching

A three-stage Runge–Kutta scheme is applied in a TVD preserving form [4] with theo-
retical CFL= 1. To accelerate the convergence to steady state, explicit residual smoothing
is applied. It allows CFL numbers of about 1.5 (instead of 0.75 which is used in practice
without the residual smoothing) for subsonic and transonic flows in the case of ENO= 3
and up to 2 for the upwind biased relaxation. Actually, the latter is used everywhere except
in the computation of the defect correction. For steady state computations, local time steps
are used based on local eigenvalues calculated separately for inviscid and viscous operators.

2.5. Sensitive Faces, Cells, and Use of a Linearly Stable Template

In practice, to save substantial computational effort without appreciable loss of accuracy,
a fixed linearly stable template is applied everywhere except on “sensitive” faces where the
variable ENO template is used. The cell face is called sonic if one of the sonic eigenvalues
changes sign across the face. The face is called sensitive if it belongs to the one-dimensional
neighborhood of a sonic cell face. The neighborhood is measured by the number of points
in the ENO template-1.

The notion of sensitive face is also used in the damping coefficients technique (see Sec-
tion 4). A cell is called sensitive if at least one of its faces is sensitive, and different damping
coefficients may be used in sensitive and nonsensitive cells. This allows for improvement of
the convergence rate (see Section 5.4). The values of damping coefficients used in practice
are 0.6 for sensitive cells and 1.1 for nonsensitive cells.

3. MULTIGRID DEFECT CORRECTION APPROACH

The code is embedded in the framework of the multigrid method; that is, the grids are
arranged in hierarchical levels, starting from a coarse level (grid) which typically con-
tains a single grid, and then refining it so that each grid contains the next-level refinement
geometrically. Local refinements are allowed and are used in practical computations.

Multigrid algorithms were originally developed as solvers for discretized linear elliptic
boundary-value problems, but sophisticated algorithms for nonlinear fluid-flow problems
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were already developed two decades ago (see [19] and numerous references therein). The
multigrid algorithm or “cycle” is a generalization, by some recursion, of the two-grid
cycle. The latter is composed of two stages, an error-smoothing process and a coarse-grid
correction stage. Error smoothing is performed by a (usually) local and computationally
inexpensive relaxation process, such as Gauss–Seidel relaxation. The aim of this stage
is to reduce error modes that are oscillatory relative to the grid. The equations for the
error are then approximated and solved on a coarser grid, and the resulting correction is
interpolated and added to the fine-grid solution to obtain an improved approximation. The
so-called full-approximation scheme (FAS) [10] is a generalization of this basic algorithm
which can handle nonlinear problems directly, as well as facilitating the incorporation of
local refinement and other advanced techniques. The multigrid cycle is embedded in a
grid-sequencing algorithm (known as full multigrid—FMG), which supplies a good initial
approximation to the fine-grid solution by first solving the problem on a coarser grid and
interpolating the solution to the fine grid.

Multigrid methods have been used successfully for solving hard problems of fluid dy-
namics by a very large number of researchers and practitioners; see for example [15–18].
However, we are not aware of successful applications of multigrid methods in conjunction
with ENO discretization for difficult problems.

Previously [5–7], only the simple grid-sequencing procedure was employed. That is,
the computation on each successively finer level used results interpolated from the coarser
level as an initial guess. But the coarser grids were never revisited, so although this method
was useful compared to single-grid computations, it did not exhibit the required multigrid
acceleration. Moreover, because of the use of local grid refinements, coarser grid feedback
is necessary in order to get a correct overall solution. That is, the mutual effect of the solution
in regions where the fine grid is not employed and in regions where it is employed must
be taken into account. The method and the corresponding computer code are ultimately
intended to deal with complex aerodynamic configurations, similarly to [13]. Therefore,
it is crucial to improve the efficiency of the method without compromising accuracy. As
noted in Section 1, direct application of the multigrid algorithm with ENO is inefficient
(sometimes nonconvergent). Instead, we resort to a method where a simple stable scheme
is used for relaxation within the multigrid algorithm. The ENO discretization is employed
to correct the defect in the equations resulting from the less accurate discretization. This
general approach has often been used before for fluid-flow problems, with and without
multigrid; see, e.g., [21–23].

In its basic form the defect correction approach is defined by an iterative process for a
given problem

Lu = F, (3.1)

which can be written as

L1u(n+1) = F− [L2u(n) − L1u(n)
]
. (3.2)

Here,u andF are the solution and the given forcing term, respectively,n is the iteration
number,L is a (possibly nonlinear) operator,L2 is typically a high-order operator approxi-
mation (ENO in our application) toL, andL1 is an approximation toL that can be inverted
efficiently by multigrid techniques. Thus, a defect correction, representing the difference
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between the values of operatorsL1 and L2 applied to the current solution field, is added
as a forcing term to the right-hand side of the equations, and the actual relaxation process
is performed using a stable and easy-to-invert operatorL1. In this work, operatorsL1 and
L2 only approximate the convection part of the equations differently, and the viscous terms
approximated as described above are added to the left-hand side of Eq. (3.2). The termL1

is chosen as a low-order upwind-biased operator, withcharacteristic fluxesinterpolated by
only aone-point stencildetermined (in each characteristic field) according to the sign of the
corresponding eigenvalue. The termL2 is the ENO operator described above. It typically
employs three-point variable stencils for flux approximation. The defect correction is ap-
plied only on multigrid levels which contain ultimately refined local grids; on other levels
the relaxation process is simply driven by the low-order operatorL1. Thus, when no local
refinements are used, the defect correction is applied only on the finest level.

A potentially attractive development of ENO discretization is WENO (weighted ENO;
see [8, 9].) In this approach, a weighted average of interpolated fluxes is employed, rather
than only interpolating from the neighboring region where the flow is smoothest. The
analysis given in the following sections gives rise to hopes that WENO schemes (which are
a combination of stencils that may be produced by ENO) may also be handled effectively
by the multigrid defect-correction framework. However, in our present application, WENO
schemes are unlikely to provide a significant advantage, since, as noted above, we use
ENO only at sensitive points where a discontinuity occurs within the span of the stencil.
At these points WENO stencils emulate ENO ([9], p. 18), because of the large discrepancy
in smoothness among the cells spanned by the stencil. Also, more research seems to be
required to establish the proper WENO weightings, especially in the case of 3-D industrial
flows.

4. OPTIMAL DAMPING AND CONVERGENCE

OF THE DEFECT-CORRECTION PROCESS

We present here a simple convergence analysis for the defect-correction process. We
first generalize the defect-correction algorithm slightly (but effectively) by introducing a
damping parameter,ω. Accordingly, we modify Eq. (3.2) as

L1u(n+1) = L1u(n) + ω[F− L2u(n)
]
. (4.1)

Note that forω = 1 Eq. (4.1) is reduced to (3.2). Forω < 1 the correction is damped, while
ω > 1 represents over-correction. Usually, we shall not distinguish between these two cases
and use the term “damping” for anyω.

To analyze the convergence properties of the damped defect-correction process we denote
the converged solution bȳu (that is,L2ū = F) and subtract from Eq. (4.1) the trivial equation

L1ū = L1ū+ ω[ F− L2ū]. (4.2)

Suppose thatL1 andL2 are linear operators, and lete(n+1) = u(n+1) − ū ande(n) = u(n) − ū
denote the errors after iterationn+ 1 and iterationn, respectively. We thus obtain

L1e(n+1) = [L1− ωL2]e(n). (4.3)
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We can use Eq. (4.3) to prove convergence of the residualL1e(n) in certain cases, and also
to optimizeω.

Consider for example the case whereL1 andL2 are the standard first-order-accurate and
second-order-accurate upwind discretizations of the convection operator in 1D,

L1ui = fi − fi−1,

L2ui = 3

2
fi − 2 fi−1+ 1

2
fi−2 (4.4)

= 3

2
L1ui − 1

2
L1ui−1,

where f = f (u) is some linear flux (for examplef (u) = u.) Substituting these operators
into Eq. (4.3) yields

L1e(n+1)
i =

(
1− 3ω

2

)
L1e(n)i +

ω

2
L1e(n)i−1, (4.5)

and hence, using the maximum norm,

∥∥L1e(n+1)
∥∥ ≤ (∣∣∣∣1− 3ω

2

∣∣∣∣+ ∣∣∣∣ω2
∣∣∣∣)∥∥L1e(n)

∥∥. (4.6)

We find that the amplification factor of the residual norm is bounded from above by

µ =
∥∥L1e(n+1)

∥∥∥∥L1e(n)
∥∥ ≤

∣∣∣∣1− 3ω

2

∣∣∣∣+ ∣∣∣∣ω2
∣∣∣∣. (4.7)

Now, if we choose the standardω = 1, we getµ ≤ 1, which implies that the defect-
correction process may stagnate (as indeed it does in this case [20]). But if we employ
the optimal damping factorω = 2/3, we obtainµ = 1/3, implying extremely fast conver-
gence of nearly an order of magnitude per every two iterations.

In contrast to this example, discretizations that are mostly or only of central-difference
type are likely to exhibit slow convergence in defect-correction iterations, as well as direct
multigrid iterations, because of their smallh-ellipticity measures. Anh-elliptic finite dif-
ference operator is one for whichanyerror which is oscillatory relative to the discretization
grid (i.e., varies significantly over a small number of mesh-cells) produces a relatively large
residual. (See, e.g., [19] for a quantitative definition in the framework of Fourier local-mode
analysis.) Central-difference advection operators are not generallyh-elliptic. Therefore, as
we now show, convergence rates cannot be improved significantly by damping.

Central-difference discretizations for linear convection in 1D can be written in the form

L2ui =
∑

j

ai, j
fi+ j − fi− j

2 j
, (4.8)

where the sum is taken over the span of the stencil, and
∑

j ai, j = 1. Here, f (u) is again
some linear flux. Consider an oscillatory error of the form

ei = (−1)iφi ,
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whereφ is some function that is smooth relative to the grid. That is,φ (hence alsof (φ))
undergoes very little relative variation over the span of the discretization stencil, and there-
fore

‖L2φ‖
‖ f (φ)‖ = ε(φ)¿ 1.

Since, for alli, j , (−1)(i+ j ) = (−1)(i− j ), it follows from from (4.8) that‖L2e‖ ∼ ‖L2φ‖.
On the other hand, for the first-order upwind scheme we have

|L1ei | = | f (e)i − f (e)i−1| = | f (φ)i + f (φ)i−1|,

and therefore,‖L1e‖ ∼ ‖ f (φ)‖, because of the smoothness off (φ) relative to the grid.
We conclude that for such oscillatory errors,

‖L2e‖
‖L1e‖ = O(ε).

Hence, by Eq. (4.3), the defect-correction iteration yields for such errors∥∥L1e(n+1)
∥∥∥∥L1e(n)
∥∥ ≥ 1− ωO(ε).

Since an obvious requirement for convergence isω < 2 (because, for errors that are smooth
relative to the grid,L1e≈ L2e, by consistency), we conclude that such oscillatory errors
converge slowly in the defect-correction process regardless ofω. At best,ε−1 iterations are
required to reduce the error by an order of magnitude or so. Similarly, since smoothing of
all oscillatory errors (i.e., such that are not resolved by the coarser grid) is essential for
multigrid convergence as well, central-difference discretizations do not lend themselves to
direct application of multigrid techniques for precisely the same reason.

4.1. Optimalω for the ENO Operator

The ENO method is inherently nonlinear, and the resulting discretization stencils de-
pend on the current approximation to the solution. The efficiency of the defect-correction
algorithm—and the optimal damping factor—depend on the stencils employed both for the
target discretization and the driver. Hence, it is somewhat solution-dependent. However, in
our code we actually use ENO only near sensitive regions in the domain where sonic eigen-
values change sign (see Section 2.5). In most parts of the domain we save computational
cost with little or no loss of accuracy by employing a linear third-order scheme in which
the flux is interpolated from one downstream and two upstream points. In the linear 1-D
scalar case, assuming for simplicity a positive coefficient, the flux difference at celli is
approximated by

L2ui = 1

3
( fi+1− fi )+ 5

6
( fi − fi−1)− 1

6
( fi−1− fi−2), (4.9)

while the driver again approximates the flux difference by the simple first-order upstream
schemeL1 of Eq. (4.4). Employing the same procedure as above, we find the bound on the
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residual convergence factor to be

µ ≤
∣∣∣∣ω3
∣∣∣∣+ ∣∣∣∣1− 5ω

6

∣∣∣∣+ ∣∣∣∣ω6
∣∣∣∣ = ∣∣∣∣ω2

∣∣∣∣+ ∣∣∣∣1− 5ω

6

∣∣∣∣. (4.10)

We discern that in the 1-D linear case the residual convergence factor of the defect-correction
process with no damping (ω = 1) is a satisfactoryµ = 2/3. This can be improved slightly
by over-correction, the optimalω being 6/5, yieldingµ = 0.6. In practice, for the full
nonlinear system, we found slightly better behavior if we usedω = 1.1, rather than 1.2,
presumably because the over-correction excites some nonlinear modes.

In sensitive regions many different stencils are possible, and for some cases (at sonic
points) the driver itself can vary. But for two common cases,µ is as in Eq. (4.10), which we
denote byµ1. At the other extreme, for purely one-sided stencils, the residual convergence
factor is bounded by

µ2 ≤
∣∣∣∣ω3
∣∣∣∣+ ∣∣∣∣7ω6

∣∣∣∣+ ∣∣∣∣11ω

6
− 1

∣∣∣∣ = ∣∣∣∣9ω6
∣∣∣∣+ ∣∣∣∣11ω

6
− 1

∣∣∣∣. (4.11)

Since either of these convergence factors is possible, we chooseω which will minimize
max(µ1, µ2). The optimal choice forµ2 is ω = 6/11≈ 0.545, yieldingµ2 ≤ 9/11. As it
happens, this choice ofω also yieldsµ1 ≤ 9/11, obtained by substitutingω = 6/11 into
Eq. (4.10). So the optimalω seems to be 6/11 under this worst-case analysis (because any
other choice would increase the bound onµ2.) However, this view is a bit too pessimistic for
a somewhat subtle reason:µ2 corresponds to one-sided stencils, say, purely upstream. But
ENO will “pick” a purely upstream stencil only if the current flux differences are smoother
in two consecutive upstream locations than in the neighboring downstream location. On
the other hand, the bound forµ2 given by Eq. (4.11) is sharp only if the flux-differences
of the error at these two upstream locations are of different sign. But this means that the
upstream error is in fact oscillatory, so ENO is very unlikely to produce this stencil when the
worst-case conditions exist, at least while the error is large enough to affect the stencil. If we
assume that the two neighboring upstream (or, analogously, downstream) flux-differences
are of the same sign whenever this stencil occurs, we obtain

µ2 ≤
∣∣∣∣5ω6

∣∣∣∣+ ∣∣∣∣11ω

6
− 1

∣∣∣∣, (4.12)

and the optimal choice for minimizing max(µ1, µ2) is thenω = 2/3≈ 0.667, yielding a
residual convergence factor bound of 7/9. In practice we found that usingω = 0.6 yielded
a good compromise between these two choices, and all the results we present use this value
at sensitive points. We remark again that other stencils are also possible, for which the
computation of the optimalω is far less straightforward. It appears, however, that the above
are the extreme cases.

Of course, convergence in 1D does not ensure convergence of the full three-dimensional
problem, but it is a necessary condition. Also, it provides a good estimate of the convergence
behavior in regions where the flow is nearly aligned with the grid, or nearly so, which
typically occurs in a large part of the domain. Thus, these are encouraging results, and
we indeed found that by following the guidelines of this analysis we obtained satisfactory
convergence behavior for complicated three-dimensional flows as we describe below.
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We conclude this section by remarking that an alternative to damping is the approach
of recombining iterants, employing some acceleration method that is suitable for nonlinear
problems. We chose not to employ such methods mainly because of the additional storage
requirements. We believe, however, that employing such methods, especially in a spatially
dependent way as suggested in [24] is likely to improve the convergence rates with little
computational overhead (but nonnegligible additional memory).

5. RESULTS

Previously reported results [5–7] showed good accuracy on relatively coarse grids. They
also exhibited good flow discontinuity capturing capacity of the ENO method without any
need for numerical parameters which are associated with either explicit or implicit artifi-
cial viscosity. The objective of the present verification study was to check the ability of
the modified method to allow (due to its multigrid structure) the improved accuracy of the
calculations of aerodynamic parameters by employing additional refined grids with (option-
ally) local refinements. Solutions for transonic, turbulent flow over different configurations
in flight conditions where viscous effects are significant were obtained. In these computa-
tions the effects of turbulence are modeled through an eddy-viscosity hypothesis with the
Baldwin–Lomax turbulence model [25] used for turbulence closure.

An accuracy and robustness check was performed by solving the Euler equations with
the new method on the set of grids designed forviscouscomputations, possessing much
higher aspect ratio of computational cells than in conventional Euler computations. This
allowed the verification of the robustness of the method in demanding conditions and the
companson of the computed pressure drag values to the theoretical ideal induced drag.

The next series of computations were performed with the turbulent flow over the ONERA
M-6 wing at free-stream Mach numberM∞ = .84 and angle of attackα = 3.06◦ (Re=
11.7× 106). This case has been the subject of numerous studies in the past with reliable
surface pressure measurements available.

Additional computational tests address the flow over a cranked and twisted transonic
wing with highly cusped profiles, typical of modern business jets. Because of these physical
characteristics, transonic flow over this wing is complicated, and, because of thick boundary
layers, computations performed with the inviscid (Euler) equations are almost irrelevant.
The solutions presented here possess the normal spacings at the wing surface, keepingy+
of about 1.5–2.5 on the finest meshes employed in order to allow reliable representation of
viscous effects.

5.1. Robustness and Accuracy of the Method: Theoretical Check

An interesting example, which enables us to verify the accuracy of the method, is obtained
by solving the Euler equations on so-called Navier–Stokes grids. Such grids have much
higher aspect ratio of cells than the conventional “Euler grids” (which are not supposed
to resolve boundary layers). On the other hand, a discretization scheme approximating the
convection operator is less dissipative in the absence of viscous terms. The accuracy of such
computations reflects the ability of the grid to resolve accurately the convection terms of the
Navier–Stokes equations. In the case of inviscid subsonic flow over a symmetric wing, the
computed pressure drag may be compared to the theoretical ideal induced drag. It equals
zero at zero angle of attack. The multigrid defect-correction method (DC) was applied to
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TABLE I

Comparison Between Computed and Theoretical Pressure

Drag for ONERA M-6 Wing at M∞ = 0.60

Angle of attack
(degrees) CD (theory) CD (DC)

0 0.0000 0.0001
1 0.0005 0.0006
2 0.0019 0.0020
3 0.0042+ 0.0044

Note.Inviscid computations were on grids with high aspect ratio of
cells. The suffix “+” means that atα = 3◦, the flow possesses a super-
sonic pocket which apparently accounts for an additional 0.0001 dis-
crepancy between computed and theoretical values.

the inviscid flow over the ONERA M-6 wing on the set of grids normally used for the
Navier–Stokes computations (given in Section 5.2) atM∞ = .60, withα = 0◦, 1◦, 2◦, 3◦.
The runs exhibited good convergence (just a few multigrid cycles yield 3 or 4 significant
digits in aerodynamic coefficients). Table I compares the computed drag coefficients with
the theoretical values.

Table II presents the asymptotic convergence of aerodynamic coefficients atM∞ = .60,
with α = 3◦. The ultimately resolved grid (at level 4) contained 176× 64× 32 cells. All
the computations of Table II used the three-point ENO template at the finest level employed.

5.2. ONERA M-6 Wing

Pressure coefficients computed by the prototype ENO method [6] were in close agreement
with the experiments for the case (M∞ = .84, α = 3.06◦) along the entire wing span. Good
shock-capturing capability was demonstrated and the results were found to be very close to
those exhibited by other high-accuracy computations. These computations used relatively
coarse grids containing 44× 16× 8, 88× 16× 16 points (in the streamwise, normal to
surface and spanwise directions, respectively) and a subset of a finer grid 176× 32× 16
(which roughly covered the boundary-layer region) as a local refinement. A partial view of
the grid is given in Fig. 1. The computation in [6] (which used the simple grid-sequencing
approach) yielded lift and drag coefficients ofCL = .268 andCD = .0178, respectively.

TABLE II

Asymptotic Behavior of Aerodynamic Coefficients

for ONERA M-6 Wing at M∞ = 0.60

# of MG levels CL CD

1 0.2201 0.0083
2 0.2183 0.0057
3 0.2222 0.0046
4 0.2219 0.0044

Note.Inviscid Computations were done on grids with high as-
pect ratio of cells.
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FIG. 1. Partial view of C-O mesh for ONERA M-6 wing.

These figures closely matched previously published results by other authors on substantially
finer computational grids [6].

To test the ability of the modified method to produce improved accuracy of aerodynamic
estimates, this case was rerun. One series of computations was performed with the old (grid
sequencing) and new (defect correction) methods, using the set of grids of [6], except for
the finest grid which was extended to include the entire computational domain, in order
to provide a reference for comparison. Both computations gave identical aerodynamic
coefficientsCL = .270 andCD = .0174 and practically identical pressure distributions.
The code of [6] used the three-point ENO stencil on all three levels, while the present
method employed a one-point upwind-biased scheme on all multigrid levels with a three-
point ENO defect correction on the finest level. It may be concluded that:

1. In the absence of local refinements both methods produce the same numerical results
(though of course the computation by the new method is much faster).

2. The old method is less accurate when applied to the case were local refinements are
involved.

The next step was to rerun the exact set of grids used in [6] (with local refinement on
the finest level) by the new method. The results were the same as those achieved by both
methods on the set with a full fine grid. This suggests that the multigrid defect-correction
method properly applied to reduced grids (local refinements) essentially retains the accuracy
achieved on full fine grids.

To verify the asymptotic behavior of the method, a fourth level, containing a local refine-
ment (in the direction normal to the surface) of the third-level grid, was added. The new
set of grids was used twice by the multigrid method. In the first run, the defect-correction
strategy was applied on the third and fourth levels since the third level contains ultimately
refined regions. The second run employed the defect correction on the fourth level only
and, to ensure the accuracy, the relaxation scheme on the third level was switched from
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TABLE III

Effect of Grid Density on Aerodynamic Coefficients

(M∞ = .84,α = 3.06◦)

# of Levels CL CD pressure CD friction

3 0.270 0.0125 0.0049
4 0.269 0.0119 0.0051

the upwind-biased to the three-point ENO. Both computations gave almost identical pres-
sure distributions withCL = .269 andCD = .0170 in both cases. Table III summarizes the
values of aerodynamic coefficients for three- and four-level multigrid.

In Fig. 2 the computed surface pressure coefficients (taken from the finest grid) are
compared with wind-tunnel experiment at the station 2y/b = .44. In Fig. 3 the third-level
results are presented at the same span station which were taken (1) from the three-level
computation and (2) from the four-level computation. It is interesting to note that an almost
imperceptible change in surface pressure distributions resulting from the refinement, which
is typical for the whole wing span, has an appreciable impact on the pressure drag.

5.3. Multigrid Performance of the Method: Turbulent Transonic Flow
over a Transport-Type Cranked Wing

The goal of this study is to estimate the performance of the new method by applying it
to a glove-like wing with twisted and cusped profiles. At the transonic flight conditions,
the case is representative of a flow which is highly influenced by shock–boundary layer

FIG. 2. Comparison of computed pressure distributions and wind-tunnel experiment. Four multigrid levels
were employed, with the finest grid covering only the boundary-layer region (local refinement). In the experiment,
2y/b = 0.44. In the computation 2y/b = 0.47, which was the closest pressure location defined in the computation.
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FIG. 3. Comparison of two computed pressure distributions and wind-tunnel experiment. The results using
three full-domain multigrid levels are compared to those employing also an additional locally refined grid (in the
boundary-layer regions). The results shown are from the third computational grid, with 2y/b = 0.44 (same as the
experiment). This accounts for the slightly better rear-shock fit than seen in Fig. 2.

interaction. This usually slows down the convergence of numerical schemes. The geometry
of the wing with previous numerical experiments are given in [6, 7]. The results indicated
good accuracy. The ability of the code to produce reliable results for substantially different
flight conditions is demonstrated in Figs. 4 and 5.

The convergence of the grid-sequencing code was, however, slow. The present numerical
experiment confirmed the ability of the new method to resolve properly the shock–boundary
layer interaction by using the technique of local refinements. The results are similar to those
achieved for the ONERA M-6 wing. To estimate the multigrid acceleration, which resulted
from the use of the defect-correction method (DC), the results were compared to those
achieved by the previously used grid-sequencing (GS) algorithm. Comparisons are pre-
sented atM∞ = .80,CL = .53 (which correspond to flight conditions higher than those of
cruise). In this regime, a straightforward MG strategy (FAS) in conjunction with a usual ENO
relaxation scheme fails even when it is applied to only two coarser levels. To demonstrate
the convergence history of the computations, the lift, pressure drag, and skin-friction coeffi-
cients are presented in Tables IV, V, and VI, respectively, as a function of the computational
work. In these tables, 1 “work unit” roughly corresponds to 15 iterations of the DC method.
The integral norm of the density residuals is given in Table VII. The computation em-
ployed three multigrid levels with successive grids containing 44× 16× 8, 88× 16× 16,
and 176× 32× 16 computational cells in the streamwise, normal to surface, and spanwise
directions, respectively.

Both computations ultimately produced almost identical results including the surface
pressure distributions which are omitted here. It may be concluded from Tables IV–VII that
the defect-correction multigrid method is about four times faster. For example, the accuracy
of 0.5% in both lift and drag coefficients is achieved within less than one work unit by the
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FIG. 4. Transport-type wing. Chordwise pressure distribution at different span stations. MG ENO computation
versus wind-tunnel experiment.M = .80,Re= 3.5× 106, α = 1◦. Solid lines represent computation and circles
represent full aircraft W/T test.

FIG. 5. Transport-type wing. Chordwise pressure distribution at different span stations. MG ENO computation
versus wind-tunnel experiment.M = .92,Re= 3.5× 106, α = 1◦. Solid lines represent computation and circles
represent full aircraft W/T test.
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TABLE IV

Convergence History of the Lift Coefficients Computed

by the Previous (GS) and New (DS) Method

Work units CL (DC) CL (GS)

1 0.531 0.512
2 0.534 0.525
4 0.534 0.532
6 0.534

Note.Transport-type cranked wing,M∞ = .80, α = 1.0◦.

TABLE V

Convergence History of the Pressure Drag Coef-

ficients Computed by the Previous (GS) and New

(DS) Method

CD pressure CD pressure
Work units (DC) (GS)

1 0.0231 0.0220
2 0.0232 0.0225
4 0.0232 0.0231
6 0.0232

Note.Transport-type cranked wing,M∞ = .80, α = 1.0◦.

TABLE VI

Convergence History of the Skin-Friction Coefficients

Computed by the Previous (GS) and New (DS) Method

CD friction CD friction
Work units (DC) (GS)

1 0.0052 0.0051
2 0.0052 0.0052
4 0.0052 0.0052
6 0.0052

Note.Transport-type cranked wing,M∞ = .80, α = 1.0◦.

TABLE VII

Convergence History of the Density Residual

Computed by the Previous (GS) and New (DS)

Method

Residual Residual
Work units (DC) (GS)

1 1.0e−7 1.0e−6

2 2.0e−8 4.0e−7

4 2.0e−9 7.0e−8

6 2.0e−8

Note.Transport-type cranked wing,M∞ = .80, α = 1.0◦.
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FIG. 6. Transport-type wing. Chordwise pressure distribution at the midsection of the outer wing. Solution
after 10 defect-correction iterations (3-level MG).

DC method compared to four work units by the old method. Moreover, the new method
exhibits almost monotonic convergence of the residuals while the old (GS) method exhibits
a rather “wavy” behavior. Numerical experiments with additional wings showed that the
above acceleration factor is often even higher than reported here. Wings of irregular form

FIG. 7. Transport-type wing. Chordwise pressure distribution at the midsection of the outer wing. Solution
after 10 defect-correction iterations (3-level MG): zoom.
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FIG. 8. Transport-type wing. Chordwise pressure distribution at the midsection of the outer wing. Solution
after 15 defect-correction iterations (3-level MG).

enjoy higher rates of acceleration because of the use of the present method. Furthermore,
the improvement is expected to be still greater as finer grids are employed, because the
performance of the naive grid-sequencing scheme must deteriorate both in terms of the
convergence rate and in terms of its accuracy if local refinement is used.

FIG. 9. Transport-type wing. Chordwise pressure distribution at the midsection of the outer wing. Solution
after 15 defect-correction iterations (3-level MG): zoom.
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FIG. 10. Transport-type wing. Pressure distribution on the upper surface of the wing.

FIG. 11. Transport-type wing. Streamwise velocity VX contours just above the upper surface of the wing.
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5.4. Damped Defect Corrections

Here we present the computational results with the use of the damping technique which
was described in Section 4. We use the same aerodynamic configuration and flight
conditions as in Section 5.3. The results achieved by the undamped defection correction
method are compared with those that used damping coefficients 0.6 and 1.1 at the sensitive
and nonsensitive cells, respectively, and with the converged solution.

Pressure distributions are given at the midsection of the outer wing after 10 and 15 defect-
correction iterations which are described by Figs. 6 and 8, respectively. A closeup of the
difficult-to-converge region in Figs. 6 and 8 is given in Figs. 7 and 9.

We observe that the use of variable damping coefficients significantly improves the rate
of convergence. In particular, it quickly reduces the amplitudes of oscillations at the foot of
the shock. In this location the shock boundary-layer interaction produces a region of reverse
flow. The shock pattern is clearly seen in Fig. 10, which represents the upper surface pressure
distribution. Figure 11 displays the streamwise velocity component just above the wing.
The most inner “island” (or contour) represents a region of reverse flow.

6. CONCLUSIONS

A multigrid solver has been developed and applied to a 3D model of turbulent compress-
ible transonic flow at a high Reynolds number. A finite-volume discretization is employed,
with essentially non-oscillatory (ENO) discretization of the convection terms. The solver
extends the capabilities of its predecessors by the introduction of the complete nonlinear
(FAS) multigrid framework, implemented with a defect-correction technique, and by the
allowance of local grid refinement where required.

These features were tested on the ONERA M-6 wing. The results with and without
a locally refined grid were compared to wind-tunnel experiments. They exhibit a good
agreement. The locally refined grid provided accuracy comparable to that of a full additional
fine grid and at a much smaller computational cost. This efficient utilization of the locally
refined grid was made possible by the multigrid structure, which allows the solution in the
refined region to influence the flow in the unrefined regions (and vice versa). We expect
this effect to become more important as more levels of local refinement are employed. An
additional check of robustness and accuracy of the proposed method was performed by
solving the inviscid flow over the ONERA M-6 wing on a set of grids previously used for
the Navier–Stokes computations. The lack of natural dissipation in combination with high
aspect ratio of cells, which is typical of the stretched “Navier–Stokes grids,” makes this
test highly demanding. The comparison with the theoretical data shows that the present
method successfully resolves the convection terms of the Navier–Stokes equations without
requiring artificial dissipation. Improvements in code performance were successfully tested
on an example of a cranked and twisted transonic wing with highly cusped profiles. The
defect-correction driven multigrid approach exhibited a robust behavior in this case which
is a representative of complicated flow-fields containing significant regions of separated
flow. The overall acceleration, which is due to the combination of the present nonlinear
multigrid framework and the use of local refinements, is estimated to be about an order of
magnitude in the case of complicated wing geometries.

In the future, we plan to implement this solver in a multiblock framework, which even-
tually will allow us to model flow over far more complicated geometries. This code will be
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implemented in parallel, based on our parallel implementation of its predecessor, which is
presently being developed.
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